Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Viruses ; 15(5)2023 05 13.
Article in English | MEDLINE | ID: covidwho-20242589

ABSTRACT

HIV-positive patients with acquired immunodeficiency syndrome (AIDS) often require treatment on intensive care units (ICUs). We aimed to present data from a German, low-incidence region cohort, and subsequently evaluate factors measured during the first 24 h of ICU stay to predict short- and long-term survival, and compare with data from high-incidence regions. We documented 62 patient courses between 2009 and 2019, treated on a non-operative ICU of a tertiary care hospital, mostly due to respiratory deterioration and co-infections. Of these, 54 patients required ventilatory support within the first 24 h with either nasal cannula/mask (n = 12), non-invasive ventilation (n = 16), or invasive ventilation (n = 26). Overall survival at day 30 was 77.4%. While ventilatory parameters (all p < 0.05), pH level (c/o 7.31, p = 0.001), and platelet count (c/o 164,000/µL, p = 0.002) were significant univariate predictors of 30-day and 60-day survival, different ICU scoring systems, such as SOFA score, APACHE II, and SAPS 2 predicted overall survival (all p < 0.001). Next to the presence or history of solid neoplasia (p = 0.026), platelet count (HR 6.7 for <164,000/µL, p = 0.020) and pH level (HR 5.8 for <7.31, p = 0.009) remained independently associated with 30-day and 60-day survival in multivariable Cox regression. However, ventilation parameters did not predict survival multivariably.


Subject(s)
HIV-1 , Humans , Tertiary Care Centers , Prognosis , Intensive Care Units , Risk Factors , Retrospective Studies
2.
Nat Cancer ; 4(1): 96-107, 2023 01.
Article in English | MEDLINE | ID: covidwho-2186111

ABSTRACT

Patients with cancer are at high risk of severe coronavirus disease 2019 (COVID-19), with high morbidity and mortality. Furthermore, impaired humoral response renders severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines less effective and treatment options are scarce. Randomized trials using convalescent plasma are missing for high-risk patients. Here, we performed a randomized, open-label, multicenter trial ( https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE ) in hospitalized patients with severe COVID-19 (n = 134) within four risk groups ((1) cancer (n = 56); (2) immunosuppression (n = 16); (3) laboratory-based risk factors (n = 36); and (4) advanced age (n = 26)) randomized to standard of care (control arm) or standard of care plus convalescent/vaccinated anti-SARS-CoV-2 plasma (plasma arm). No serious adverse events were observed related to the plasma treatment. Clinical improvement as the primary outcome was assessed using a seven-point ordinal scale. Secondary outcomes were time to discharge and overall survival. For the four groups combined, those receiving plasma did not improve clinically compared with those in the control arm (hazard ratio (HR) = 1.29; P = 0.205). However, patients with cancer experienced a shortened median time to improvement (HR = 2.50; P = 0.003) and superior survival with plasma treatment versus the control arm (HR = 0.28; P = 0.042). Neutralizing antibody activity increased in the plasma cohort but not in the control cohort of patients with cancer (P = 0.001). Taken together, convalescent/vaccinated plasma may improve COVID-19 outcomes in patients with cancer who are unable to intrinsically generate an adequate immune response.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/therapy , SARS-CoV-2 , Immunization, Passive/adverse effects , Treatment Outcome , COVID-19 Serotherapy , Antibodies, Viral , Neoplasms/therapy
3.
Cancers (Basel) ; 14(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2109948

ABSTRACT

BACKGROUND: Two-dose COVID-19 vaccination often results in poor humoral response rates in patients with hematologic malignancies (HMs); yet responses to COVID-19 booster vaccines and the risk of COVID-19 infection post-booster are mostly uncertain. METHODS: We included 200 outpatients with HMs and predominantly lymphoid neoplasms (96%, 191/200) in our academic center and reported on the humoral responses, which were assessed by measurement of anti-spike IgG antibodies in peripheral blood as early as 14 days after mRNA-based prime-boost vaccination, as well as factors hampering booster efficacy. Previous basic (double) immunization was applied according to the local recommendations with mRNA- and/or vector-based vaccines. We also report on post-booster COVID-19 breakthrough infections that emerged in the Omicron era and the prophylaxis strategies that were applied to poor and non-responders to booster vaccines. RESULTS: A total of 55% (110/200) of the patients achieved seroconversion (i.e., anti-spike protein IgG antibody titer > 100 AU/mL assessed in median 48 days after prime-boost vaccination) after prime-boost vaccination. Multivariable analyses revealed age, lymphocytopenia, ongoing treatment and prior anti-CD20 B-cell depletion to be independent predictors for booster failure. With each month between anti-CD20-mediated B-cell depletion and booster vaccination, the probability of seroconversion increased by approximately 4% (p < 0.001) and serum-antibody titer (S-AbT) levels increased by 90 AU/mL (p = 0.011). Notably, obinutuzumab treatment was associated with an 85% lower probability for seroconversion after prime-boost vaccination compared to rituximab (p = 0.002). Of poor or non-responders to prime-boost vaccination, 41% (47/114) underwent a second booster and 73% (83/114) underwent passive immunization. COVID-19 breakthrough infections were observed in 15% (29/200) of patients after prime-boost vaccination with predominantly mild courses (93%). Next to seroconversion, passive immunization was associated with a significantly lower risk of COVID-19 breakthrough infections after booster, even in vaccine non-responders (all p < 0.05). In a small proportion of analyzed patients with myeloid neoplasms (9/200), the seroconversion rate was higher compared to those with lymphoid ones (78% vs. 54%, accordingly), while the incidence rate of COVID-19 breakthrough infections was similar (22% vs. 14%, respectively). Following the low frequency of myeloid neoplasms in this study, the results may not be automatically applied to a larger cohort. CONCLUSIONS: Patients with HMs are at a high risk of COVID-19 booster vaccine failure; yet COVID-19 breakthrough infections after prime-boost vaccination are predominantly mild. Booster failure can likely be overcome by passive immunization, thereby providing immune protection against COVID-19 and attenuating the severity of COVID-19 courses. Further sophistication of clinical algorithms for preventing post-vaccination COVID-19 breakthrough infections is urgently needed.

4.
Cancers (Basel) ; 14(15)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1969100

ABSTRACT

COVID-19 vaccines have become an integral element in the protection of cancer patients against SARS-CoV-2. To date, there are no direct comparisons of the course of COVID-19 infection in cancer patients between the pre- and post-vaccine era. We analyzed SARS-CoV-2 infections and their impact on cancer in COVID-19 vaccinated and non-vaccinated patients from three German cancer centers. Overall, 133 patients with SARS-CoV-2 were enrolled in pre- and post-vaccine eras: 84 non-vaccinated and 49 vaccinated, respectively. A mild course of COVID-19 was documented more frequently in vaccinated patients (49% vs. 29%), while the frequency of severe and critical courses occurred in approximately one-half of the non-vaccinated patients (22% vs. 42%, p = 0.023). Particularly, patients with hematologic neoplasms benefited from vaccination in this context (p = 0.031). Admissions to intermediate- and intensive-care units and the necessity of non-invasive and invasive respiratory support were reduced by 71% and 50% among vaccinated patients, respectively. The median length of admission was 11 days for non-vaccinated and 5 days for vaccinated patients (p = 0.002). COVID-19 mortality was reduced by 83% in vaccinated patients (p = 0.046). Finally, the median time from SARS-CoV-2 infection to restarting cancer therapy was 12 and 26 days among vaccinated and non-vaccinated groups, respectively (p = 0.002). Although this study does not have enough power to perform multivariate analyses to account for confounders, it provides data on COVID-19 in non-vaccinated and vaccinated cancer patients and illustrates the potential benefits of COVID-19 vaccines for these patients.

6.
Angiogenesis ; 25(4): 503-515, 2022 11.
Article in English | MEDLINE | ID: covidwho-1899208

ABSTRACT

AIMS: Although coronavirus disease 2019 (COVID-19) and bacterial sepsis are distinct conditions, both are known to trigger endothelial dysfunction with corresponding microcirculatory impairment. The purpose of this study was to compare microvascular injury patterns and proteomic signatures in COVID-19 and bacterial sepsis patients. METHODS AND RESULTS: This multi-center, observational study included 22 hospitalized adult COVID-19 patients, 43 hospitalized bacterial sepsis patients, and 10 healthy controls from 4 hospitals. Microcirculation and glycocalyx dimensions were quantified via intravital sublingual microscopy. Plasma proteins were measured using targeted proteomics (Olink). Coregulation and cluster analysis of plasma proteins was performed using a training-set and confirmed in a test-set. An independent external cohort of 219 COVID-19 patients was used for validation and outcome analysis. Microcirculation and plasma proteome analysis found substantial overlap between COVID-19 and bacterial sepsis. Severity, but not disease entity explained most data variation. Unsupervised correlation analysis identified two main coregulated plasma protein signatures in both diseases that strictly counteract each other. They were associated with microvascular dysfunction and several established markers of clinical severity. The signatures were used to derive new composite biomarkers of microvascular injury that allow to predict 28-day mortality or/and intubation (area under the curve 0.90, p < 0.0001) in COVID-19. CONCLUSION: Our data imply a common biological host response of microvascular injury in both bacterial sepsis and COVID-19. A distinct plasma signature correlates with endothelial health and improved outcomes, while a counteracting response is associated with glycocalyx breakdown and high mortality. Microvascular health biomarkers are powerful predictors of clinical outcomes.


Subject(s)
COVID-19 , Sepsis , Adult , Biomarkers/metabolism , Humans , Microcirculation , Proteome , Proteomics
7.
Current Developments in Nutrition ; 6(Supplement_1):229-229, 2022.
Article in English | PMC | ID: covidwho-1895785
8.
Nutrients ; 14(10)2022 May 10.
Article in English | MEDLINE | ID: covidwho-1855724

ABSTRACT

The SARS-CoV-2 virus is the causative agent of the COVID-19 pandemic. The disease causes respiratory failure in some individuals accompanied by marked hyperinflammation. Vitamin A (syn. retinol) can exist in the body in the storage form as retinyl ester, or in the transcriptionally active form as retinoic acid. The main function of retinol binding protein 4 (RBP4), synthesized in the liver, is to transport hydrophobic vitamin A to various tissues. Vitamin A has an important role in the innate and acquired immune system. In particular, it is involved in the repair of lung tissue after infections. In viral respiratory diseases such as influenza pneumonia, vitamin A supplementation has been shown to reduce mortality in animal models. In critically ill COVID-19 patients, a significant decrease in plasma vitamin A levels and an association with increased mortality have been observed. However, there is no evidence on RBP4 in relation to COVID-19. This prospective, multicenter, observational, cross-sectional study examined RBP4 (enzyme-linked immunosorbent assay) and vitamin A plasma levels (high-performance liquid chromatography) in COVID-19 patients, including 59 hospitalized patients. Of these, 19 developed critical illness (ARDS/ECMO), 20 developed severe illness (oxygenation disorder), and 20 developed moderate illness (no oxygenation disorder). Twenty age-matched convalescent patients following SARS-CoV-2 infection, were used as a control group. Reduced RBP4 plasma levels significantly correlated with impaired liver function and elevated inflammatory markers (CRP, lymphocytopenia). RBP4 levels were decreased in hospitalized patients with critical illness compared to nonpatients (p < 0.01). In comparison, significantly lower vitamin A levels were detected in hospitalized patients regardless of disease severity. Overall, we conclude that RBP4 plasma levels are significantly reduced in critically ill COVID-19 patients during acute inflammation, and vitamin A levels are significantly reduced in patients with moderate/severe/critical illness during the acute phase of illness.


Subject(s)
COVID-19 , Retinol-Binding Proteins, Plasma , Vitamin A , COVID-19/blood , Critical Illness , Cross-Sectional Studies , Humans , Prospective Studies , Retinol-Binding Proteins, Plasma/analysis , Vitamin A/blood
9.
Molecules ; 27(8)2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1810037

ABSTRACT

(1) Background: ACE and CPN serum activity correlated with disease severity in an earlier study of 45 hospitalized COVID-19 patients. The serum protein profile was investigated in the same cohort here to shed more light on the involvement of the renin-angiotensin system (RAS). (2) Methods: High-definition mass spectrometry-based protein expression analysis was performed, followed by multivariate statistical and network analyses. (3) Results: The protein profiles of hospitalized patients (HoP) differed significantly from those of convalescent and healthy probands. Surprisingly, HoP samples separated into six groups according to their protein profiles: group (G) 1 represented the youngest and the least afflicted patients, and G6 the oldest and critically ill patients. At least two major pathophysiological schemes were indicated based on differing involvement of the kallikrein-kinin system (KKS), the RAS and complement activation. The serum angiotensinogen concentration increased with disease severity. (4) Conclusions: The important role of the RAS in the response to COVID-19 infection was substantiated, but other pathways such as the KKS, plasminogen activation and complement activation influence the systemic response to the infection.


Subject(s)
COVID-19 , Renin-Angiotensin System , Angiotensinogen/metabolism , COVID-19/complications , Humans , Peptidyl-Dipeptidase A/metabolism , Proteomics , Renin-Angiotensin System/physiology , Severity of Illness Index
10.
J Pers Med ; 12(5)2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1809990

ABSTRACT

INTRODUCTION: The Coronavirus Disease 2019 (COVID-19) pandemic has been caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The most important approach to prevent severe disease progression and to contain the pandemic is the use of COVID-19 vaccines. The aim of this study was to investigate the humoral and cellular response in immunosuppressed patients with inflammatory bowel disease (IBD) on treatment with anti-TNF (infliximab, adalimumab) and anti-α4ß7-Integrin (vedolizumab) 6 months after mRNA vaccination against SARS-CoV-2 compared to healthy subjects. METHODS: In this prospective study, 20 IBD patients and 9 healthy controls were included 6 months after the second BNT162b2 vaccination. In addition to quantitative determination of IgG antibody levels against the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein subunit S1, a SARS-CoV-2 surrogate neutralization test (sVNT) was used to assess potential neutralization capacity. SARS-CoV-2-specific T-cell responses were measured using an interferon-γ (IFN-γ) release assay (IGRA; Euroimmun Medical Laboratory Diagnostics, Lübeck, Germany). RESULTS: S-IgG could still be detected in the majority of IBD patients 6 months after second vaccination. Compared to healthy controls, IBD patients treated with anti-TNF agents showed both lower neutralizing activity in sVNT (percent inhibition of ACE2 receptor binding by RBD protein) and lower IgG-S (AU/mL) antibody levels (AB) (sVNT: 79% vs. 2%, p < 0. 001; AB: 1018 AU/mL vs. 141 AU/mL, p = 0.025). In contrast, patients on therapy with vedolizumab showed no impairment in humoral immune response (sVNT, S-IgG) compared with healthy controls. Specific T-cellular reactivity was detected in 73% of IBD patients and in 67% of healthy controls independent of immunosuppressive therapy (anti-TNF., vedolizumab) (p = 0.189). CONCLUSION: Six months after BNT162b2 vaccination, this study found significantly decreased antibody levels in patients under anti-TNF therapy. IBD patients under anti-TNF and vedolizumab therapy had no impairment of T-cellular reactivity compared to healthy controls at this time point. Further studies with larger collectives for confirmation should follow.

11.
Current Oncology ; 29(4):2312-2325, 2022.
Article in English | MDPI | ID: covidwho-1762124

ABSTRACT

Patients with hematologic malignancies are at high risk of exacerbated condition and higher mortality from coronavirus disease 2019 (COVID-19). Bamlanivimab, casirivimab/imdevimab combination, and sotrovimab are monoclonal antibodies (mABs) that can reduce the risk of COVID-19-related hospitalization. Clinical effectiveness of bamlanivimab and casirivimab/imdevimab combination has been shown for the Delta variant (B.1.617.2), but the effectiveness of the latter treatment against the Omicron variant (B.1.1.529) has been suggested to be reduced. However, the tolerability and clinical usage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific mABs in patients with hematologic malignancies are less specified. We present a retrospective case series analysis of all SARS-CoV-2-infected patients with hematologic malignancies who received SARS-CoV-2-specific mABs at our facility between February and mid-December 2021. A total of 13 COVID-19 patients (pts) with at least one malignant hematologic diagnosis received SARS-CoV-2-specific mABs at our facility, with 3 pts receiving bamlanivimab and 10 pts receiving casirivimab/imdevimab combination. We observed SARS-CoV-2 clearance in five cases. Furthermore, we observed a reduction in the necessity for oxygen supplementation in five cases where the application was administered off-label. To the best of our knowledge, we present the largest collection of anecdotal cases of SARS-CoV-2-specific monoclonal antibody use in patients with hematological malignancies. Potential benefit of mABs may be reduced duration and/or clearance of persistent SARS-CoV-2 infection.

12.
J Pers Med ; 12(3)2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1732103

ABSTRACT

(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a functional receptor of SARS-CoV-2 and counter-balances ACE in the renin-angiotensin system (RAS). An imbalance of the RAS could be associated with severe COVID-19 progression. (2) Methods: Activities of serum proteases angiotensin-converting enzyme (ACE) and carboxypeptidase N (CPN) for 45 hospitalized and 26 convalescent COVID-19 patients were investigated vs. healthy controls using labeled bradykinin (DBK) degradation with and without inhibition by captopril as a read-out. Data were correlated to clinical parameters. (3) Results: DBK degradation and CPN activity were significantly reduced gender-independently in COVID-19 and returned to normal during convalescence. ACE activity was over-active in severe disease progression; product DBK1-5 was significantly increased in critically ill patients and strongly correlated with clinical heart and liver parameters. ACE inhibitors seemed to be protective, as DBK1-5 levels were normal in moderately ill patients in contrast to critically ill patients. (4) Conclusions: CPN and ACE serum activity correlated with disease severity. The RAS is affected in COVID-19, and ACE could be a therapeutic target. Further proof from dedicated studies is needed.

13.
Can Respir J ; 2022: 2466789, 2022.
Article in English | MEDLINE | ID: covidwho-1723957

ABSTRACT

Background: Following COVID-19, patients often present with ongoing symptoms comparable to chronic fatigue and subjective deterioration of exercise capacity (EC), which has been recently described as postacute COVID-19 syndrome. Objective: To objectify the reduced EC after COVID-19 and to evaluate for pathologic limitations. Methods: Thirty patients with subjective limitation of EC performed cardiopulmonary exercise testing (CPET). If objectively limited in EC or deteriorated in oxygen pulse, we offered cardiac stress magnetic resonance imaging (MRI) and a follow-up CPET. Results: Eighteen male and 12 female patients were included. Limited relative EC was detected in 11/30 (36.7%) patients. Limitation correlated with reduced body weight-indexed peak oxygen (O2) uptake (peakV̇O2/kg) (mean 74.7 (±7.1) % vs. 103.6 (±14.9) %, p < 0.001). Reduced peakV̇O2/kg was found in 18/30 (60.0%) patients with limited EC. Patients with reduced EC widely presented an impaired maximum O2 pulse (75.7% (±5.6) vs. 106.8% (±13.9), p < 0.001). Abnormal gas exchange was absent in all limited EC patients. Moreover, no patient showed signs of reduced pulmonary perfusion. Using cardiac MRI, diminished biventricular ejection fraction was ruled out in 16 patients as a possible cause for reduced O2 pulse. Despite noncontrolled training exercises, follow-up CPET did not reveal any exercise improvements. Conclusions: Deterioration of EC was not associated with ventilatory or pulmonary vascular limitation. Exercise limitation was related to both reduced O2 pulse and peakV̇O2/kg, which, however, did not correlate with the initial severity of COVID-19. We hypothesize that impaired microcirculation or limited peripheral O2 utilization might be causative for prolonged deterioration of EC following acute COVID-19 infection.


Subject(s)
COVID-19 , Exercise Test , Exercise Tolerance , Female , Humans , Lung , Male , Oxygen Consumption , SARS-CoV-2
14.
Biomedicines ; 10(1)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625877

ABSTRACT

Severe acute respiratory syndrome coronovirus-2 (SARS-CoV-2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. Vaccination is considered the core approach to containing the pandemic. There is currently insufficient evidence on the efficacy of these vaccines in immunosuppressed inflammatory bowel disease (IBD) patients. The aim of this study was to investigate the humoral response in immunosuppressed IBD patients after COVID-19 mRNA vaccination. In this prospective study, IgG antibody levels (AB) against the SARS-CoV-2 receptor-binding domain (spike-protein) were quantitatively determined. For assessing the potential neutralizing capacity, a SARS-CoV-2 surrogate neutralization test (sVNT) was employed in IBD patients (n = 95) and healthy controls (n = 38). Sera were examined prior to the first/second vaccination and 3/6 months after second vaccination. Patients showed lower sVNT (%) and IgG-S (AU/mL) AB both before the second vaccination (sVNT p < 0.001; AB p < 0.001) and 3 (sVNT p = 0.002; AB p = 0.001) and 6 months (sVNT p = 0.062; AB p = 0.061) after the second vaccination. Although seroconversion rates (sVNT, IgG-S) did not differ between the two groups 3 months after second vaccination, a significant difference was seen 6 months after second vaccination (sVNT p = 0.045). Before and three months after the second vaccination, patients treated with anti-tumor necrosis factor (TNF) agents showed significantly lower AB than healthy subjects. In conclusion, an early booster shot vaccination should be discussed for IBD patients on anti-TNF therapy.

15.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: covidwho-1524179

ABSTRACT

The COVID-19 pandemic is caused by the SARS CoV-2 virus and can lead to severe lung damage and hyperinflammation. In the context of COVID-19 infection, inflammation-induced degradation of the glycocalyx layer in endothelial cells has been demonstrated. Syndecan-1 (SDC-1) is an established parameter for measuring glycocalyx injury. This prospective, multicenter, observational, cross-sectional study analyzed SDC-1 levels in 24 convalescent patients that had been infected with SARS-CoV-2 with mild disease course without need of hospitalization. We included 13 age-matched healthy individuals and 10 age-matched hospitalized COVID-19 patients with acute mild disease course as controls. In convalescent COVID-19 patients, significantly elevated SDC-1 levels were detected after a median of 88 days after symptom onset compared to healthy controls, whereas no difference was found when compared to SDC-1 levels of hospitalized patients undergoing acute disease. This study is the first to demonstrate signs of endothelial damage in non-pre-diseased, convalescent COVID-19 patients after mild disease progression without hospitalization. The data are consistent with studies showing evidence of persistent endothelial damage after severe or critical disease progression. Further work to investigate endothelial damage in convalescent COVID-19 patients should follow.


Subject(s)
COVID-19/pathology , Glycocalyx/pathology , Syndecan-1/blood , COVID-19/metabolism , Cross-Sectional Studies , Endothelium, Vascular/pathology , Female , Glycocalyx/metabolism , Humans , Inflammation , Lung/pathology , Male , Middle Aged , Prospective Studies
16.
Life (Basel) ; 11(11)2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1512471

ABSTRACT

Crohn's disease and ulcerative colitis are chronic inflammatory bowel diseases (IBDs). Immunosuppressive medication is the main therapeutic approach to reducing inflammation of the gastrointestinal tract. Immunocompromised patients are more vulnerable to severe courses of illness after infection with common pathogens. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 leads to acute respiratory distress syndrome (ARDS) following severe pulmonal damage in a significant number of cases. The worldwide circulation of SARS-CoV-2 has led to major concerns about the management of IBD patients during the pandemic, as these patients are expected to be at greater risk of complications because of their underlying altered immunological condition and immunosuppressive therapies. Vaccination against SARS-CoV-2 is considered the main approach in containing the pandemic. Today, several vaccines have been shown to be highly effective in the prevention of SARS-CoV-2 infection and severe disease course in subjects without underlying conditions in respective registration studies. Patients with underlying conditions such as IBD and/or immunosuppressive therapies were not included in the registration studies, so little is known about effectiveness and safety of SARS-CoV-2 vaccination in immunocompromised IBD patients. This review provides an overview of the recent knowledge about vaccine response in IBD patients after vaccination against SARS-CoV-2.

17.
Arthritis Rheumatol ; 73(10): 1791-1799, 2021 10.
Article in English | MEDLINE | ID: covidwho-1391545

ABSTRACT

OBJECTIVE: Infection with the novel coronavirus SARS-CoV-2 triggers severe illness with high mortality in a subgroup of patients. Such a critical course of COVID-19 is thought to be associated with the development of cytokine storm, a condition seen in macrophage activation syndrome (MAS) and secondary hemophagocytic lymphohistiocytosis (HLH). However, specific data demonstrating a clear association of cytokine storm with severe COVID-19 are still lacking. The aim of this study was to directly address whether immune activation in COVID-19 does indeed mimic the conditions found in these classic cytokine storm syndromes. METHODS: Levels of 22 biomarkers were quantified in serum samples from patients with COVID-19 (n = 30 patients, n = 83 longitudinal samples in total), patients with secondary HLH/MAS (n = 50), and healthy controls (n = 9). Measurements were performed using bead array assays and single-marker enzyme-linked immunosorbent assay. Serum biomarker levels were assessed for correlations with disease outcome. RESULTS: In patients with secondary HLH/MAS, we observed pronounced activation of the interleukin-18 (IL-18)-interferon-γ axis, increased serum levels of IL-1 receptor antagonist, intercellular adhesion molecule 1, and IL-8, and strongly reduced levels of soluble Fas ligand in the course of SARS-CoV-2 infection. These observations appeared to discriminate immune dysregulation in critical COVID-19 from the well-recognized characteristics of other cytokine storm syndromes. CONCLUSION: Serum biomarker profiles clearly separate COVID-19 from MAS or secondary HLH in terms of distinguishing the severe systemic hyperinflammation that occurs following SARS-CoV-2 infection. These findings could be useful in determining the efficacy of drugs targeting key molecules and pathways specifically associated with systemic cytokine storm conditions in the treatment of COVID-19.


Subject(s)
COVID-19/diagnosis , Cytokine Release Syndrome/etiology , Interleukin-18/blood , Interleukin-8/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Macrophage Activation Syndrome/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Cytokine Release Syndrome/blood , Diagnosis, Differential , Female , Humans , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/complications , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/complications , Male , Middle Aged , Young Adult
18.
Front Immunol ; 12: 679841, 2021.
Article in English | MEDLINE | ID: covidwho-1369665

ABSTRACT

Understanding the course of the antibody response directed to individual epitopes of SARS-CoV-2 proteins is crucial for serological assays and establishment of vaccines. Twenty-one synthetic peptides were synthesized that have ten amino acids overlap and cover the complete membrane (M) protein. Plasma samples from 32 patients having acute disease and 30 patients from the convalescent phase were studied. Only peptide M01 (aa 1-20) and to a lesser extent peptide M21 (aa 201-222) showed specific reactivity as compared to historical control plasma samples. Peptide M01 was recognized by IgM- (71.9%) and IgG-specific antibodies (43.8%) during the acute phase as early as day 8 PIO. In a longitudinal analysis, a higher reactivity was observed for the IgM response directed to peptide M01 following day 20 PIO as compared to earlier time points of the acute phase. In the convalescent phase, antibody reactivity to the two M-specific peptides was significantly lower (<30% seropositivity). A fusion protein encoding major parts of RBD also showed higher rates of recognition during acute (50.0%) and lower rates in the convalescent phase (23.3%). Taken together, our results suggest that during the acute phase of COVID-19 antibodies are raised to two linear epitopes of the SARS-CoV-2 M protein, located at the very N- and C-termini, showing almost similar levels of reactivity as immunodominant linear epitopes derived from the spike and nucleocapsid protein. Anti-M is also present in the convalescent phase of COVID-19 patients, however at lower levels, with the N-terminus of the M protein as a preferred target.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Matrix Proteins/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/biosynthesis , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunodominant Epitopes/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Patient Acuity , Peptide Fragments/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/genetics
19.
Nutrients ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1285399

ABSTRACT

COVID-19 is a pandemic disease that causes severe pulmonary damage and hyperinflammation. Vitamin A is a crucial factor in the development of immune functions and is known to be reduced in cases of acute inflammation. This prospective, multicenter observational cross-sectional study analyzed vitamin A plasma levels in SARS-CoV-2 infected individuals, and 40 hospitalized patients were included. Of these, 22 developed critical disease (Acute Respiratory Distress Syndrome [ARDS]/Extracorporeal membrane oxygenation [ECMO]), 9 developed severe disease (oxygen supplementation), and 9 developed moderate disease (no oxygen supplementation). A total of 47 age-matched convalescent persons that had been earlier infected with SARS-CoV-2 were included as the control group. Vitamin A plasma levels were determined by high-performance liquid chromatography. Reduced vitamin A plasma levels correlated significantly with increased levels of inflammatory markers (CRP, ferritin) and with markers of acute SARS-CoV-2 infection (reduced lymphocyte count, LDH). Vitamin A levels were significantly lower in hospitalized patients than in convalescent persons (p < 0.01). Of the hospitalized patients, those who were critically ill showed significantly lower vitamin A levels than those who were moderately ill (p < 0.05). Vitamin A plasma levels below 0.2 mg/L were significantly associated with the development of ARDS (OR = 5.54 [1.01-30.26]; p = 0.048) and mortality (OR 5.21 [1.06-25.5], p = 0.042). Taken together, we conclude that vitamin A plasma levels in COVID-19 patients are reduced during acute inflammation and that severely reduced plasma levels of vitamin A are significantly associated with ARDS and mortality.


Subject(s)
COVID-19/blood , Vitamin A/blood , Adult , Aged , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/mortality , Chromatography, Liquid/methods , Critical Illness , Cross-Sectional Studies , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Ferritins/blood , Hospitalization , Humans , Inflammation/epidemiology , Lymphocyte Count , Male , Middle Aged , Prospective Studies , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2 , Severity of Illness Index
20.
Sci Rep ; 11(1): 12775, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275948

ABSTRACT

With increasing numbers of patients recovering from COVID-19, there is increasing evidence for persistent symptoms and the need for follow-up studies. This retrospective study included patients without comorbidities, who recovered from COVID-19 and attended an outpatient clinic at a university hospital for follow-up care and potential convalescent plasma donation. Network analysis was applied to visualize symptom combinations and persistent symptoms. Comprehensive lab-testing was ascertained at each follow-up to analyze differences regarding patients with vs without persistent symptoms. 116 patients were included, age range was 18-69 years (median: 41) with follow-ups ranging from 22 to 102 days. The three most frequent persistent symptoms were Fatigue (54%), Dyspnea (29%) and Anosmia (25%). Lymphopenia was present in 13 of 112 (12%) cases. Five of 35 cases (14%) had Lymphopenia in the later follow-up range of 80-102 days. Serum IgA concentration was the only lab parameter with significant difference between patients with vs without persistent symptoms with reduced serum IgA concentrations in the patient cohort of persistent symptoms (p = 0.0219). Moreover, subgroup analyses showed that patients with lymphopenia experienced more frequently persistent symptoms. In conclusion, lymphopenia persisted in a noticeable percentage of recovered patients. Patients with persistent symptoms had significantly lower serum IgA levels. Furthermore, our data provides evidence that lymphopenia is associated with persistence of COVID-19 symptoms.


Subject(s)
Anosmia/etiology , COVID-19/complications , Dyspnea/etiology , Fatigue/etiology , Immunoglobulin A/blood , Lymphopenia/etiology , SARS-CoV-2 , Adolescent , Adult , Aftercare , Aged , COVID-19/epidemiology , COVID-19/virology , Female , Follow-Up Studies , Germany/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL